Tag Archives: statistics

Getting iPython Notebook to Run “Correctly” in Mac OS X 10.8

I’m going to keep this post brief so that the steps are clear and concise.  The reason for writing this post is that I wanted to get iPython Notebook, a powerful tool for data analysis, to run with plotting and pandas in Mac OS X 10.8.  When I initially tried to get this running, I would encounter errors where there were conflicts between 32-bit and 64-bit installations of different packages.  After a good deal of trial and error, I found the following steps resulted in a full iPython Notebook environment with Pandas and Matplotlib functioning flawlessly.

Continue reading

Starting Quirks with Pandas from an R Junkie

Okay, okay, the title might be a little sensationalised.  I have been using the R statistics package for processing the results of evolutionary runs since beginning my PhD 2 years ago.  In that time, I have become familiar with the basic process to importing data, performing basic population statistics, mean, confidence intervals, etc, and plotting using ggplot.  I’ve always felt that I could streamline the process though as I perform a great deal of preprocessing using Python.  This typically involves combining multiple replicate runs into one data file and possibly even doing some basic statistics using the built-in functionality of Python.

Continue reading

Escaping the Spreadsheet Mentality: Start with the Right Data Format

Growing up on a healthy diet of Microsoft Office products, I am well versed in Word, Excel and Powerpoint.  As I have transitioned into the research world, these products still have their place, however, I sometimes find that the habits I developed for organizing data doesn’t necessarily transfer to statistical analysis.  Recently, I ran into a situation where I was evaluating the performance of solutions in multiple different environments.  Organizing this data appeared straightforward to me at first, I would simply group the different environments into one row grouped by the id of the individual.  My data then looked something like this:

GenerationEnvironment 1Environment 2Environment 3

Continue reading